Polymath tutorial for Calculating Conversion with Catalyst Decay in Batch Reactors

(Example 10-4)

The following is the differential equation we want to solve using Polymath

$$\frac{dX}{dt} = k * (1 - X)$$
$$\frac{dX_d}{dt} = k * \frac{(1 - X_d)}{(1 + k_d t)}$$

Where,

 $k = 0.01 and k_d = 0.1$

and integration time span is t= 0 to t=500

Step 1: First make sure you have polymath installed. If you don't have it then refer to the installation instruction present on <u>http://www.umich.edu/~elements/5e/software/polymath.html</u>

When you open Polymath, following window would appear

🧐 POLYMATH 6.10 Educational Release	_	\times
<u>File P</u> rogram <u>W</u> indow <u>H</u> elp		
D 📂 🕼 🖬 🛝 📭 🛍 🖉 🚧 🏡 🛛 🗖 🗖 💷 💭 ! 🚟 🂡		
19:43 24-02-2019 CAPS NUM		11.

Step 2: To use the ODE solver in Polymath, first click on the "Program" tab present on the toolbar. This will bring up a list of options from which you need to select. In this case we need to solve differential equations so select "DEQ Differential Equations". The shortcut button "dx" for differential equation

solver is also present on the menu bar () as shown by red circle in below screenshot
--	--	--

🍓 P	OLYMATH	5.10 Educational Release	—	\times
File	Program	Window Help		
	LEQ	Linear Equations 🛛 🖉 🖾 📖 🔊 ! 🧱 💡		
	NLE	Nonlinear Equations		
	DEQ	Differential Equations		
	REG	Regression		
19:58	25-02-	2019 CAPS NUM		/

This will open up another window, which looks like this.

i POLYMATH 6.10 Educational Release - [Ordinary Differential Equations Solver]	_	\Box \times
Eile Program Edit Format Problem Examples Window Help		- 8 ×
D 🍃 🏂 🖬 👗 🛍 🛍 🖉 🚧 🐍 🗖 💷 💷 💭 ! 🚟 💡		
de × ini 1 Iable □ Graph 🔽 RKF45 🔽 □ Iable □ Graph		
Differential Equations: 0 Auxiliary Equations: 0 × No equations entered.		
<		>
Ln 1 No File No Title		
20:03 25-02-2019 CAPS NUM		1

Step 3: To enter the differential equations, press the "d(x)+" button present on the menu bar (shown by red circle in the below screenshot). This will bring up a dialogue box in which you can enter your differential equation. You will also need to specify an initial value for the differential variable.

🧐 POLYMATH 6.10 Educational Release - [Ordinary Differential Equations Solver]		\times
Eile Program Edit Format Problem Examples Window Help	-	ē ×
D_\$# \$# 🖬 👗 🖻 🛍 🖉 👫 🏞 🛛 🕅 💷 💷 🎘 ! 🚟 🂡		
👾 👘 🕚 📧 Differential Equations Solver: Enter Differential Equation		
Differential Equations:		
$\frac{d(\boxed{)})}{d(\boxed{)}} =$		
Set the initial value: y(0) =		
Comment:		
<u>C</u> lear <u>D</u> one Cancel		
<		>
Ln 1 No File No Title		
20:06 25-02-2019 CAPS NUM		11.

In the above dialogue box, only one differential equation can be entered at one time

First differential equation is

$$\frac{dX}{dt} = k * (1 - X)$$
 and X (0) = 0

Enter the above equation and initial value in the space provided in the rectangular box as shown below.

🔞 POLYMATH 6.10 Educational Release - [Ordinary Differential Equations Solver]	_		\times
📧 <u>F</u> ile <u>P</u> rogram <u>E</u> dit For <u>m</u> at Pro <u>b</u> lem E <u>x</u> amples <u>W</u> indow <u>H</u> elp		-	ē ×
D 🍃 🌮 🖬 👗 🖻 🛍 🖉 🚧 🏞 🛛 🗖 🗖 💷 🎟 💷 🎤 ! 🚟 🂡			
🗠 🔫 👬 🚺 📧 Differential Equations Solver: Enter Differential Equation			
Differential Equations:			
$\frac{d(X)}{d(T)} = \begin{bmatrix} k^{*}(1-X) \end{bmatrix}$			
Set the initial value: X(0) = 0			
Comment:			
<u>C</u> lear <u>D</u> one Cancel			
<			>
Ln 1 No File No Title			
20:12 25-02-2019 CAPS NUM			11.

Now, press Done button. You will find that your equations are entered in the main window

🚱 POLYMATH 6.10 Educational Release - [Ordinary Differential Equations Solver] —	\times
E <u>File Program Edit Format Prob</u> lem Examples <u>W</u> indow <u>H</u> elp	- 8 ×
🗅 🍃 🕼 🔚 👗 🛍 🛍 🖉 🛤 🏞 📔 🖾 🖾 📾 📖 📖 🥕 ! 🚟 💡	
de × ini 1 ≥ → RKF45 ▼ □ Iable □ Graph ▼ Report	
Differential Equations: 1 Auxiliary Equations: 0 🗙 Undefined variables : k	
$d(X) / d(t) = k^{*}(1-X)$	
$\mathbf{X}(0) = 0$	
c	>
Ln 1 No File No Title	
20:21 25-02-2019 CAPS NUM	/

Repeat the similar exercise to enter the equations for 2nd differential equation

$$\frac{dX_d}{dt} = k * \frac{(1 - X_d)}{(1 + k_d t)}, X_d(0) = 0$$

OLYMATH 6.10 Educational Releas	e - [Ordinary Differential Equations Solver] —	
Eile Program Edit Format P	ro <u>b</u> lem E <u>x</u> amples <u>W</u> indow <u>H</u> elp	- 8 ×
	• 15 🖻 🖻 🔲 📾 🥕 ! 🚟 🎖	
🗠 ×, 📶 🕄 💌 🔶 RKF45	✓ Iable Graph ✓ Report	
Differential Equations: 1 Auxiliary Equatio	Differential Equations Solver: Enter Differential Equation	
$d(X) / d(t) = k^{*}(1-X)$ X(0) = 0	Enter the differential equation:	
	d (Xd) k*(1-Xd)/(1+kd*t)	
	$\frac{1}{d(t_{t_{t_{t_{t}}}})} =$	
	Set the initial values	
	Xd(0) = 0	
	Commont:	
<		>
Ln 1 No File No Title		
20:25 25-02-2015 CAPS INOM		
After pressing Done, your ma	in window will look like this	
🙀 POLYMATH 6.10 Educational Re	lease - [Ordinary Differential Equations Solver]	пх
File Program Edit Format	Problem Examples Window Help	
Differential Equations: 2 Augilian Eq		
Dinerential Equations: 2 Auxiliary Eq		
$d(Xd) / d(t) = k^{*}(1-Xd)/(1+kd^{*}t)$ Xd(0) = 0		
$d(X) / d(t) = k^{*}(1-X)$		
$\mathbf{X}(0) = 0$		
Le 1 No File No Th		>
20-29 25.02.2019 CARS MUL	-	
20.20 [2002-2013] CAPS [NOM		11

Enter the differential equation as shown below and press Done button.

Step 4: In the window above, there are variables that have not been specified, as indicated by the red X. The information following the X will tell you what variables have not been specified. Here, it shows that k and kd are undefined variables.

Now, to specify the value of variables, press "x=+" button (shown by red circle in below screen). Pressing this button brings up a dialogue box where you can specify explicit equations in your system. Only 1 equation can be entered at a time.

🭓 POLYMATH 6.10 Education	al Release - [Ordinary Differential Equations Solver] – 🗌	\times
👪 <u>F</u> ile <u>P</u> rogram <u>E</u> dit Fo	or <u>m</u> at Pro <u>b</u> lem E <u>x</u> amples <u>W</u> indow <u>H</u> elp	_ 8 ×
🗅 🥔 🌮 🖬 👗 🗈 🛍	0 🚧 🕹 🛛 🖬 📾 📾 🎮 🥕 ! 🛛 🧱 💡	
	RKF45 🔽 🗖 Iable 🗆 Graph 🔽 Report	
Differential Equations: 2 Auxilia	ry Equations: 0 🗙 Undefined variables : k, kd	
$d(Xd) / d(t) = k^{(1-Xd)}/(1+k)$	Differential Equations Solver: Enter Explicit Equation	
$ \begin{array}{l} Xd(0) = 0 \\ d(X) \ / \ d(t) = k^{*}(1-X) \\ X(0) = 0 \end{array} $	Enter the explicit equation:	
< Ln 5 No File No 1	lille	>

In this case, we have two variables i.e. k and kd

k = 0.01 and kd=0.1

Enter the value of k in the space provided in the rectangular box as shown below

🔞 POLYMATH 6.10 Educational Re	lease - [Ordinary Differential Equations Solver] –	\times
💵 Eile Program Edit Format	Pro <u>b</u> lem E <u>x</u> amples <u>W</u> indow <u>H</u> elp	_ & ×
D 🍃 Ĕ 📕 🗼 🖻 🛍 🖉	🚧 🐍 🖬 💷 📟 🥕 🕺 ! 🚟 💡	
de × ini- ini- RKF4 Differential Equations: 2 Auxiliary Equ	5 <u> </u>	
	Differential Equations Solver: Enter Explicit Equation Enter the explicit equation: k = 0.01	
	Comment:	
	<u>C</u> lear <u>D</u> one Cancel	
K No File No Title		>
20:43 25-02-2019 CAPS NUM		/

After you press Done, your window will appear like this

POLYMATH 6.10 Educational Release - [Ordinary Differential Equations Solver]	_	\Box \times
Eile Program Edit Format Problem Examples Window Help		- 8 ×
D 🍃 🕼 🖬 🐍 🖉 🚧 🐍 🗖 💷 💷 🎘 ! 🚟 💡		
de × ini 1 ≥ → RKF45 ▼ □ Iable □ Graph ▼ Report		
Differential Equations: 2 Auxiliary Equations: 1 🗙 Undefined variables : kd		
$d(Xd) / d(t) = k^{*}(1-Xd)/(1+kd^{*}t)$ $Xd(0) = 0$ $d(X) / d(t) = k^{*}(1-X)$ $X(0) = 0$ $k = 0.01$,
Ln 5 No File No Title		,
20:44 25:02:2019 CAPS NUM		,

Repeat the similar exercise to enter the equation for kd. After you enter the equations, your screen will appear like this:

🍓 POLYMATH 6.10 Educational Release - [Ordinary Differential Equations Solver] —		\times
<u>File Program Edit Format Problem Examples Window Help</u>		- 8 ×
D 📂 🕼 🖬 🛝 📭 🋍 🖉 🚧 🏡 🖾 📾 📾 💷 🖬 🥕 🥕 ! 🚟 🂡		
de × ini 1 ≥ → RKF45 ✓ Iable Graph ✓ Report		
Differential Equations: 2 Auxiliary Equations: 2 🗙 Initial and/or final values of the independent differential variable	not set.	
$d(Xd) / d(t) = k^{*}(1-Xd)/(1+kd^{*}t)$		^
Xd(0) = 0 $d(X) / d(t) = k^*(1-X)$		
X(0) = 0		
k = 0.01		
kd=0.1		
		~
<		>
Ln 9 No File No Title		
20:50 25-02-2019 CAPS NUM		/

Step 5: You have now entered both the differential equations and the explicit equations. Now you need to set the time span for which you want to perform the integration. This is a required input and can be seen from the comment following the X. To specify the initial and final values of t, click the "**ini-finl**" button present on the menu bar (shown by red circle in below screenshot). A dialogue box will appear again. Enter the initial value of t in the space provided. In this case t initial =0. Press OK after you have entered the initial value.

🍓 POLYMATH 6.10 Educational Release - [Ordi	nary Differential Equations Solver] —	\Box \times
Eile Program Edit Format Problem	E <u>x</u> amples <u>W</u> indow <u>H</u> elp	- 8 ×
다 🚅 🎒 🔚 👗 🗈 🏝 🖉 🚧 🏊 🛙	2 🖪 💷 📰 祠 🥕 ! 🚟 📍	
deg x=iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	□ Iable □ Graph □ Report Initial and/or final values of the independent differential vari	able not set.
	Polymath Guide	×
k = 0.01 kd=0.1	Step #1 of 2 Enter <t> initial value.</t>	OK Cancel
	0	
<		>
Ln 10 No File No Title		
21:01 25-02-2019 CAPS NUM		1.

Now, you will be prompted to enter the final value of t i.e. t=500 as shown below

•

🝓 POLYMATH 6.10 Educational Release - (Ordinary Differential Equations Solver]	—	\times
<u>File Program Edit Format Problemat</u>	em E <u>x</u> amples <u>W</u> indow <u>H</u> elp		e x
D 🖻 🎒 🔛 🐰 🗈 🛍 🖉 👫 🦆	• 🗖 🗖 🗰 📰 🖬 🥕 🥕 ! 🛛 🚟 💡		
de × ini t ≥ → RKF45	✓ Iable ☐ Graph ✓ Report	rential variable not set	
$ \begin{array}{l} d(Xd) \ / \ d(t) = \ k^{*}(1-Xd)/(1+kd^{*}t) \\ Xd(0) = 0 \\ d(X) \ / \ d(t) = \ k^{*}(1-X) \\ X(0) = 0 \\ k = 0.01 \\ kd = 0.1 \end{array} $	Polymath Guide	×	
	Step #2 of 2 Enter <t> final value.</t>	OK Cancel	
<			>
Ln 10 No File No Title			
21:08 25-02-2019 CAPS NUM			

Press OK.

When all of the necessary information has been specified, the screen will look like this. You can check that X is now replaced by ready for solution"

Ordinary Differential Equations Solver	- • •
dta ×= ini- 1 🗷 🔶 RKF45 💽 🗖 Iable 🗆 Graph 🔽 Beport	
Differential Equations: 2 Auxiliary Equations: 2 🗸 Ready for solution	
$\frac{d(Xd) / d(t) = k^{*}(1-Xd)/(1+kd^{*}t)}{Xd(t) = 0}$	
d(X) = 0 $d(X) = k^{*}(1-X)$	
X(0) = 0 k = 0.01	
kd=0.1	
t(0) = 0 t(f) = 500	
5	>
Ln 7 No File No Title	

Step 6: You can choose the method of ODE solver you would like to use by selecting the option from the drop-down menu present next to RKF45. By default, polymath uses RKF45 method. In this case, we will choose RKF45.

Contemporary Content and Polymer and Polym	- 🗆	×
Eile Program Edit Format Problem Examples Window Help		- 8 ×
🗅 📂 🕞 📕 🕺 🛍 🛍 🖉 🚧 🏞 🛛 🖾 🖾 💷 📖 📖 🎘 ! 🚟 💡		
deg ×= initial Equations: 2 BKF45 ✓ ☐ Iable Graph ✓ Report		
$\frac{d(Xd) / d(t) = k^{*}(1-Xd)/(1+k)}{Xd(0) = 0}$ $\frac{d(X) / d(t) = k^{*}(1-X)}{X(0) = 0}$ k = 0.01 $\frac{kd=0.1}{kd=0.1}$ t(0) = 0 t(f) = 500		
<		>
Ln 7 No File No Title		
21:12 25-02-2019 CAPS NUM		//

Step 7: Now select what you want polymath to output by checking the boxes on the right side of the window (shown below). The simulation will output results depending on what is selected. The options available are Table, Graph, and Report. You can check multiple boxes also at the same time.Select the appropriate option and then Click on the pink arrow \Rightarrow to have Polymath perform the integration.

Ordinary Differential Equations Solver	
at ini_ 🚯 📧 🔶 RKF45 💽 🗖 Iable 🗆 Graph 🔽 <u>R</u> eport	
Differential Equations: 2 Auxiliary Equations: 2 🗸 Ready for solution	
$d(Xd) / d(t) = k^{*}(1-Xd)/(1+kd^{*}t)$	
d(0) = 0 $d(X) / d(t) = k^{*}(1-X)$	
X(0) = 0 k = 0.01	
kd=0.1	
t(0) = 0 t(f) = 500	
In 7 No File No Title	
	///

If you selected "Report" then following screen will be displayed.

r	dinary Differ	ential Equations				25-Feb-2019	l
Ca	lculated	values of DEC) variables				
	Variable	Initial value	Minimal value	Maximal value	Final value		
1	k	0.01	0.01	0.01	0.01		
2	kd	0.1	0.1	0.1	0.1		
3	t	0	0	500.	500.		
4	x	0	0	0.9932621	0.9932621		
5	241	0					
Dif 1 2 :x	fferential d(Xd)/d(t) d(X)/d(t) plicit equencies k = 0.01	equations) = k*(1-Xd)/(= k*(1-X) ations	0 1+kd*t)	0.3250945	0.3250945		
Dif 1 2 Ex 1 2	fferential d(Xd)/d(t) d(X)/d(t) plicit equ. k = 0.01 kd = 0.1	equations) = k*(1-Xd)/(= k*(1-X) ations	01+kd*t)	0.3250945	0.3250945		
Dif 1 2 Ex 1 2 Ge	fferential d(Xd)/d(t) d(X)/d(t) plicit equa k = 0.01 kd = 0.1 eneral	equations) = k*(1-Xd)/(= k*(1-X) ations	01+kd*t)	0.3250945	0.3250945		
Dif 1 2 Ex 1 2 Ge To	fferential d(Xd)/d(t) d(X)/d(t) plicit equa k = 0.01 kd = 0.1 eneral tal number o	equations) = k*(1-Xd)/(= k*(1-X) ations	0 1+kd*t) 4	0.3250945	0.3250945		
Dif 1 2 Ex 1 2 Ge Nu	$\frac{xd}{fferential}$ $\frac{d(xd)}{d(t)}$ $\frac{d(x)}{d(t)}$ $\frac{d(x)}$	equations) = k*(1-Xd)/(= k*(1-X) ations of equations erential equations	0 1+kd*t) 4 2	0.3250945	0.3250945		
Dif 1 2 Ex 1 2 To Nu Nu	$\frac{xd}{fferential}$ $\frac{d(xd)}{d(t)}$ $\frac{d(x)}{d(t)}$ $\frac{d(x)}$	equations) = k*(1-Xd)/(= k*(1-X) ations of equations erential equations licit equations	0 1+kd*t) 4 2 2	0.3250945	0.3250945		
Dif 1 2 Ex 1 2 Ge Nu Nu Ela	fferential d(Xd)/d(t) d(X)/d(t) plicit equa k = 0.01 kd = 0.1 eneral tal number of imber of diffi imber of exp apsed time	equations) = k*(1-Xd)/(= k*(1-X) ations of equations erential equations licit equations	0 1+kd*t) 4 2 2 0.000 sec	0.3250945	0.3250945		
Dif 1 2 Ex 1 2 To Nu Ela So	fferential d(Xd)/d(t) d(X)/d(t) plicit equa k = 0.01 kd = 0.1 tal number of imber of diffi imber of exp apsed time plution metho	equations) = k*(1-Xd)/(= k*(1-X) ations of equations erential equations licit equations d	0 1+kd*t) 4 2 2 0.000 sec RKF_45	0.3250945	0.3250945		

The above report gives various information such as initial and final values of every variable present, the minimum and maximum values of the variables in the given interval, and the equations you entered.

If you selected Graph, you will get a graph of dependent variable as a function of independent variable